Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 1$ is

  • A

    $x \in \left[ {4,9} \right]$

  • B

    $x \in \left[ {3,8} \right]$

  • C

    $x \in \left[ {5,10} \right]$

  • D

    $x \in \left[ {4,7} \right]$

Similar Questions

If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is

The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is

  • [JEE MAIN 2020]

The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................

  • [JEE MAIN 2024]

Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to

  • [KVPY 2013]

Let $\alpha$ and $\beta$ be the roots of $x^2-6 x-2=0$, with $\alpha>\beta$. If $a_n=\alpha^n-\beta^n$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_8}{2 a_9}$ is

  • [IIT 2011]