Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 1$ is

  • A

    $x \in \left[ {4,9} \right]$

  • B

    $x \in \left[ {3,8} \right]$

  • C

    $x \in \left[ {5,10} \right]$

  • D

    $x \in \left[ {4,7} \right]$

Similar Questions

$\alpha$, $\beta$ ,$\gamma$  are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta  + \gamma }},\frac{1}{{\gamma  + \alpha }},\frac{1}{{\alpha  + \beta }}$ is

The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is

  • [JEE MAIN 2020]

Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$, is (where $\{.\}$ denotes fractional part function)

The equation${e^x} - x - 1 = 0$ has

The maximum possible number of real roots of equation ${x^5} - 6{x^2} - 4x + 5 = 0$ is