Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 1$ is

  • A

    $x \in \left[ {4,9} \right]$

  • B

    $x \in \left[ {3,8} \right]$

  • C

    $x \in \left[ {5,10} \right]$

  • D

    $x \in \left[ {4,7} \right]$

Similar Questions

If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then

How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?

  • [KVPY 2009]

Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is

  • [KVPY 2011]

If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

  • [IIT 1984]

For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]